Phosphatidic acid induces leaf cell death in Arabidopsis by activating the Rho-related small G protein GTPase-mediated pathway of reactive oxygen species generation.
نویسندگان
چکیده
Phosphatidic acid (PA) level increases during various stress conditions. However, the physiological roles of this lipid in stress response remain largely unknown. In this study, we report that PA induced leaf cell death and elevated the levels of reactive oxygen species (ROS) in the whole leaf and single cells. To further elucidate the mechanism of PA-induced cell death, we then examined whether Rho-related small G protein (ROP) 2, which enhanced ROS production in an in vitro assay, is involved in PA-induced ROS production and cell death. In response to PA, transgenic leaves of Arabidopsis expressing a constitutively active rop2 mutant exhibited earlier cell death and higher levels of ROS than wild type (WT), whereas those expressing a dominant-negative rop2 mutant exhibited later cell death and lower ROS. However, in the absence of exogenous PA, no spontaneous cell death or elevated ROS was observed in constitutively active rop2 plants, suggesting that the activation of ROP GTPase alone is insufficient to activate the ROP-mediated ROS generation pathway. These results suggest that PA modulates an additional factor required for the active ROP-mediated ROS generation pathway. Therefore, PA may be an important regulator of ROP-regulated ROS generation and the cell death process during various stress and defense responses of plants.
منابع مشابه
Iron Overload Induced Apoptotic Cell Death in Isolated Rat Hepatocytes Mediated by Reactive Oxygen Species
Isolated rat hepatocytes in culture were incubated with different concentrations of iron-sorbitol (50, 100, 150, and 200 µM) to assess the changes in reactive oxygen species (ROS) and lipid peroxidation leading to apoptotic hepatocyte cell death. The viability of hepatocytes was declined depending on the iron concentration. One hour incubation of the cells with 100 µM iron resulted in decreased...
متن کاملIron Overload Induced Apoptotic Cell Death in Isolated Rat Hepatocytes Mediated by Reactive Oxygen Species
Isolated rat hepatocytes in culture were incubated with different concentrations of iron-sorbitol (50, 100, 150, and 200 µM) to assess the changes in reactive oxygen species (ROS) and lipid peroxidation leading to apoptotic hepatocyte cell death. The viability of hepatocytes was declined depending on the iron concentration. One hour incubation of the cells with 100 µM iron resulted in decreased...
متن کاملThe RhoGAP SPIN6 Associates with SPL11 and OsRac1 and Negatively Regulates Programmed Cell Death and Innate Immunity in Rice
The ubiquitin proteasome system in plants plays important roles in plant-microbe interactions and in immune responses to pathogens. We previously demonstrated that the rice U-box E3 ligase SPL11 and its Arabidopsis ortholog PUB13 negatively regulate programmed cell death (PCD) and defense response. However, the components involved in the SPL11/PUB13-mediated PCD and immune signaling pathway rem...
متن کاملCuO nanoparticles induce cytotoxicity and apoptosis in human K562 cancer cell line via mitochondrial pathway, through reactive oxygen species and P53
Objective(s): This study focused on determining cytotoxic effects of copper oxide nanoparticles (CuO NPs) on chronic myeloid leukemia (CML) K562 cell line in a cell-specific manner and its possible mechanism of cell death. We investigated the cytotoxicity of CuO NPs against K562 cell line (cancerous cell) and peripheral blood mononuclear cell (normal cell). Materials and Methods: The toxicity w...
متن کاملBiochemical Aspects of Protein Changes in Seed Physiology and Germination
Seed storage proteins are synthesized as sources of carbon, nitrogen and sulfur for the next generation of plants. Reactive oxygen species serve as second messengers for signal transduction; however, molecular targets of oxidant signaling have not been defined. Here, many researchers showes that ligand–receptor mediated signaling promotes reactive oxygen species– dependent protein carbonylation...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant physiology
دوره 134 1 شماره
صفحات -
تاریخ انتشار 2004